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Random Ginzburg-Landau model revisited: Reentrant phase transitions
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We analyze the phase diagram of the random Ginzburg-Landau model, where a quenched dichotomous noise
affects the control parameter. We show that the system exhibits two types of counterintuitive reentrant second-
order phase transitions. In the first case, increasing the coupling drives the system from a disordered to an
ordered state and then back to a disordered state. In the second case, increasing the intensity of the quenched
noise, the system goes from an ordered phase to a disordered phase and back to an ordered state. We discuss
the general mechanism that produces these reentrant phase transitions, showing that it may appear in other
physical systems, such as a modification of the spin-1 Blume-Capel model proposed to describe the critical
behavior of helium mixtures in a random medium.
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I. INTRODUCTION

Random impurities play a crucial role in the physic
properties of many systems. For example, in a ferromagn
material the inclusion of random impurities shifts the critic
temperature, modifies the critical exponents, and can e
suppress the ferromagnetic phase when the proportion of
purities exceeds a certain threshold@1#. Parallel to experi-
mental studies with technological motivations, a lot of effo
has been made from the early seventies to theoretically c
acterize the critical behavior and phase diagrams of th
systems@2,3#.

Restricting ourselves to theoretical studies, we will brie
review the effect of disorder and external fluctuations on
paradigmatic model of equilibrium phase transitions:
time-dependent Ginzburg-Landau~GL! model, also referred
to as modelA, on a lattice@4,5#.

Model A can be derived from the Ising model by means
a coarse-graining procedure@6#. It describes the critical be
havior of anisotropic ferromagnet systems@4#, and the dy-
namics of front propagation@7#. Moreover, the GL Hamil-
tonian describes the critical behavior of many physi
systems as it can be interpreted as an expansion of the
energy around the critical point@5#.

Random impurities can be included in the GL model
external fluctuations perturbing the coefficients of the Ham
tonian. This procedure can be justified by both microsco
and phenomenological arguments@6#, and it has been used t
study the influence of inhomogeneities in superconduc
@8,9#. However, near the critical point, a perturbative expa
sion shows that only the fluctuations of the control parame
are relevant@6#.

Usually, the fluctuations are considered Gaussian dist
uted, and the model is known as random GL model orf4

model with random temperature. This model has been inv
tigated using renormalization group methods, conclud
that randomness in the control parameter causes the ap
ance of a new random fixed point@6#. More recent studies
@10# have revealed that replica symmetry is broken in
paramagnetic phase far away from the critical point, sugg
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ing that a deeper investigation of the physics of phase tr
sitions in random ferromagnets is necessary. Short and lo
range correlated quenched impurities have been
considered for modelA @11#, leading to relevant correction
of the mean-field value of critical exponents. Neverthele
to our knowledge, there is no complete characterization
the phase diagram and the reentrant phenomena in these
dom models.

From the point of view of nonequilibrium statistical me
chanics, there are relevant studies of the time-dependen
model perturbed by Gaussian white noise in the control
rameter@12,13#. For this case, a mean-field analysis, co
firmed by extensive numerical simulations, shows that m
tiplicative white noise can play a counterintuitive role. F
some values of the coupling, noise can induce the app
ance of an ordered phase@12#. The system also undergoe
reentrant transitions@13#, which are the result of a nontrivia
interaction between diffusive coupling and multiplicativ
noise in spatially extended systems.

This unexpected and constructive role of external fluct
tions on spatially extended systems has been a subjec
increasing interest in recent years@14–18#. As we have just
mentioned, noise can induce ordered phases, reentrant
and second order phase transitions, and even ordered sp
structures. More recently@19,20#, colored noise has bee
studied in the pure noise-induced phase transition mode
troduced in@15#, bringing out new effects when the correla
tion time of the external fluctuations changes. For instan
in addition to the reentrant phase transition as a function
the noise intensity, the model presents a new reentrant t
sition when the coupling is increased@19# as well as meta-
stability regions@20#. However, the effect of colored nois
on the GL equation has been limited only to the additive c
@21#.

In this paper we study the phase diagram of the tim
dependent GL model, modelA, with quenched dichotomou
impurities, i.e., with a dichotomous multiplicative noise
infinite correlation-time perturbing the control paramet
This is an equilibrium problem which, nevertheless, exhib
reentrant transitions akin to those found in the field of no
©2001 The American Physical Society03-1
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BUCETA, PARRONDO, AND DE LA RUBIA PHYSICAL REVIEW E63 031103
equilibrium noise-induced phase transitions. Therefore,
present study can be considered as part of the two rese
lines that we have briefly described in the above paragra
equilibrium systems with disorder and nonequilibrium nois
induced phase transitions. We use and benefit from the t
niques of both fields.

We will see that the inclusion of such a disorder produ
several relevant results. In particular, we show that the mo
exhibits two types of reentrant second-order phase tra
tions. The first one drives the system from a disordered s
to an ordered state and back to a disordered one by incr
ing the coupling, as in the pure noise-induced phase tra
tion models with colored noise. The second transition: ord
disorder-order by increasing the multiplicative noi
intensity, has no precedent, to our knowledge, in the lite
ture. We also study the dependence of the phase diagra
the proportion of impurities.

The structure of the paper is the following. In Sec. II w
present the model and the mean-field analysis. In Sec. III
describe and discuss the phase diagram of the model an
reentrant phase transitions. In Sec. IV we present nume
simulations in a two-dimensional lattice that qualitative
confirm the previous theoretical analysis. In Sec. V we g
an intuitive explanation of several reentrant transitions us
a decimation technique, and show the generality of
mechanism that produces the main features of the mo
illustrating the idea with a variant of the Blume-Capel mod
@22# proposed to model the critical behavior of helium mi
tures in a random medium. Finally, in Sec. VI we summar
the main conclusions and present the perspectives of fu
work in this field.

II. MODEL: MEAN-FIELD ANALYSIS

Consider a scalar field defined on ad-dimensional square
lattice $c i%. The time-dependent GL model with dichoto
mous quenched impurities is given by the following dime
sionless Langevin equation:

] tc i5~a1z i !c i2c i
31

D

2d (̂
j i &

~c j2c i !1h i , ~1!

where the sum runs over the 2d nearest neighbors of sitei,
andh i are Gaussian white noises with zero mean and co
lation

^h i~ t !h j~ t8!&5d i j d~ t2t8!. ~2!

The quenched multiplicative noisesz i mimic the presence
of disorder. They are Markovian dichotomous processes
tially uncorrelated and with infinite correlation time. Th
probability density of the impurities is

P~z i !5p1d~z i2D!1p2d~z i1D!, ~3!

where p6 denotes the probability that the noise takes
6D value. Note that, when referring to the impurities, t
terms probability and proportion can be exchanged in th
thermodynamic limit, since thenp6 is equal to the propor-
tion of 6D impurities.
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As we said before, in the context of anisotropic ferroma
nets, the control parameter,a, measures the distance to th
critical temperature. In this way, Eq.~1! could serve as a
model for the evolution of the local magnetization in a co
glomerate of two anisotropic ferromagnets with differe
critical temperatures.

The stationary solution of Eq.~1!, for a given configura-
tion of the disorder, is the equilibrium Gibbs state

r5
exp@2bH~$c i%;$z i%!#

Z , ~4!

where, due to Eq.~2! and the fluctuation-dissipation theorem
b52. The Hamiltonian is given by

H~$c i%;$z i%!5(
i 51

N H V~c i ;z i !1
D

8d (̂
j i &

~c j2c i !
2J ~5!

and the local potential at each site is

V~c i ;z i !52
~a1z i !

2
c i

21
c i

4

4
. ~6!

The sign of the quadratic term of the potential determin
the local dynamics at each site. If (a1z i),0, we have a
single well potential with a single equilibrium point atc i
50. On the other hand, if (a1z i).0, the statec i50 be-
comes unstable andV(c i ;z i) is a double well potential with
two symmetric stable points atc i56Aa1z i .

For an estimation of the phase diagram of the model,
use a Weiss mean-field approximation for spatially exten
systems@12#. Replacing, in the diffusive term, the field at th
nearest neighbors by the mean value,^c&, we can drop the
lattice index and write down the following equation for th
temporal evolution of the field at a generic site:

] tc5~a1z!c2c31D~^c&2c!1h, ~7!

wherez is a random variable with a probability distributio
given by Eq.~3!. This equation is equivalent to the system

] tc65~a6D!c62c6
3 1D~^c&2c6!1h, ~8!

wherec6 is the field at a site wherez56D.
Equation ~7! is not a closed evolution equation for th

stochastic processc, but it can be easily solved in the sta
tionary regime witĥ c& as a parameter. The stationary sol
tion reads:

Pst~c;^c&!5p1Pst
1~c;^c&!1p2Pst

2~c;^c&!, ~9!

wherePst
6(c;^c&) are the stationary probability densities fo

the two dynamics defined by Eq.~8!. These probability den-
sities are

Pst
6~c;^c&!5N6exp$22@V~c;6D!1Dc~c2^c&!#%,

~10!

where the potentialV(c;z) is defined in Eq.~6! andN6 are
normalization constants.
3-2
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RANDOM GINZBURG-LANDAU MODEL REVISITED: . . . PHYSICAL REVIEW E63 031103
Finally, the following self-consistent condition must b
fulfilled:

^c&5E
R
cPst~c;^c&!dc. ~11!

This equation haŝc&50 as a solution for any value o
the parameters. This solution is called thedisordered phase.
However, nonsymmetric solutions exist in some regions
the space of parameters. These solutions with^c&Þ0 are
called ordered phases. A phase transition occurs when th
system is driven from a region with only the symmetric s
lution to a region with ordered phases.

According to the mean-field theory, phase transitions
cur at those values of the parameters satisfying the cond
@12#

E
R
c

]Pst~c;^c&!

]^c&
u^c&50 dc52DE

R
c2Pst~c;0!dc51.

~12!

Equations~11! and ~12! can be also derived using a re
lica trick calculation to average the quenched disorder w
the replica symmetry ansatz~see the Appendix for details!.

In the casep151 or p251, the phase boundaries a
equivalent to the standard modelA. This phase diagram ha
been studied with both the mean-field technique@12,23# and
2d numerical simulations@5#.

III. PHASE DIAGRAM

Let us first discuss the phase diagram in the plane (D,D)
given by Eq.~12!. We distinguish two cases:a,0 anda
.0.

For a negative andD,uau, it is obvious that no ordered
phase can exist, sincec50 is stable in the two possible loca
potentials~6!. On the other hand, ifD.uau a fractionp1 of
sites feels a double well potential and then, for strong eno
couplingD, an ordered phase may appear. In Fig. 1 we p
the phase diagram fora520.75 and several values ofp1 .
Note that, below a certain value ofp1 , a reentrant transition
disorder-order-disorder~DOD! with the coupling appears
That is, by continuously increasing the coupling we can fi
drive the system from a disordered to an ordered state, a
the standard modelA, and then back to a disordered sta
This reentrant phenomenon is always present in the sys
below that critical value ofp1 . Note that by decreasingp1

the ordered phase shifts to the right, due to the fact that
fraction of double-well local potentials decreases and t
these potentials have to be deeper, i.e.,D must be larger, in
order to keep stable the ordered phase. The reentrant tr
tion increasingD is clearly indicated by the behavior of th
order parameter,m5u^c&u, as plotted in Fig. 2 whereD54
andp150.3.

For a.0, the model presents a richer phenomenolo
than in the previous case. IfD,a, every site feels a double
well potential and therefore an ordered phase appears f
given value of the coupling. On the other hand, ifD.a the
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competition between the two dynamics produces new tra
tions depending on the value ofp1 . In Fig. 3 we plot the
phase boundaries fora50.75. There is a topological chang
aroundp150.22: below this value, the region of disordere
states is connected and the region of ordered states is dis
nected ~see for instance the curve forp150.2, whereas
above p150.22 it is the other way around~see p1

50.225). Note that in this case there are two kinds of re
trant phase transitions: the one described previously~DOD!
and a new one order-disorder-order~ODO! increasing the
noise intensityD. This new reentrant phase transition a
pears above a given value of the coupling. In Fig. 4 we sh
the ODO transition by plotting the order parameter as a fu
tion of D for D54 andp150.2.

FIG. 1. Phase diagram fora520.75 and different values o
p1 . The ordered regions are located to the right of the ph
boundaries. The possibility of DOD reentrant phase transitions
pends on the value ofp1 .

FIG. 2. Order parameter as a function of the couplingD for
p150.3, a520.75, andD54.
3-3
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IV. NUMERICAL SIMULATIONS

We also performed computer simulations of the mode
two dimensions for different system sizes,L3L, varying
from L510 to L530. We measured several critical quan
ties in the simulations@5,15#: the order parameterm
5^uL22(c i u&, the susceptibilityx5bL2@^m2&2^m&2# with
b52, and the second-order cumulantk25^m2&/^m&2. Here
^•& denotes average over time and over disorder realizat
once the equilibrium state is reached. We typically aver
over one thousand configurations of disorder. Finite-s
scaling theory predicts that the second-order cumulant d
not depend on the size of the system at the critical point@24#,
providing an accurate method to determine the position
the critical points.

FIG. 3. Phase diagram fora50.75 and different values ofp1 .
Note the saddle point behavior that appears varyingp1 and the two
kinds of reentrant phase transitions, DOD and ODO, indicated
the arrows.

FIG. 4. Order parameter as a function ofD (p150.2, a
50.75,D54). The shape of the curve indicates the ODO reentr
phase transition mentioned in the text.
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In Fig. 5 we plot the numerical simulation results of th
order parameter and the susceptibility as a function of
coupling fora520.75, D54, andp150.5. Notice that the
reentrant DOD behavior of the order parameter is in qual
tive agreement with the mean-field order parameter also p
ted in the figure. The behavior of the susceptibility, al
plotted in Fig. 5, at the critical points with the two pea
becoming higher as the size of the system increases, pr
the presence of two second-order phase transitions. Ver
wide solid lines in Fig. 5 indicate the locations of the entra
and reentrant phase transitions obtained by means of
second-order cumulant technique.

Figure 6 is analogous to the previous one but fora
50.75, D59, p150.2, and varyingD. In this case we have
an ODO reentrant phase transition by increasing the mu
plicative noise intensity. We also notice that the suscepti
ity behaves at the critical points in a way similar to the p
vious case indicating again the existence of second-o
phase transitions. The second-order cumulant has been
to locate the entrant and reentrant critical points, indica
again by wide solid lines in Fig. 6.

Figures 5 and 6 show a novel and interesting feature
the mean-field approximation. In equilibrium and in mo
nonequilibrium phase transitions@12,13,15#, this approxima-
tion overestimates the size of the regions in the phase
gram with ordered phases. This could be expected since
the mean-field approximation, all the sites interact with ea

y

t

FIG. 5. Simulation results for the order parameterm and the
susceptibilityx as a function of the coupling. The value of th
parameters area520.75, D54, andp150.5. We also plot the
mean-field order parameter~solid line! and two vertical wide solid
lines indicating the location of the critical points. The inset gra
shows details of the susceptibility at smallD.
3-4
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RANDOM GINZBURG-LANDAU MODEL REVISITED: . . . PHYSICAL REVIEW E63 031103
other. However, in our case the mean-field approximat
underestimates these regions. This fact has also been f
in a nonequilibrium model with colored noise@19# and we
conjecture that it is related to the existence of an ord
disorder transition with the coupling.

V. DISCUSSION

In this section we explore the mechanisms underlying
phase transitions reported above.

The mechanism for the ODO reentrant transition a
function of D for a.0 andp1 small could be described a
follows. If D50, all the local potentials have a double we
structure and then, if the coupling is strong enough, the s
tem is in an ordered phase. WhenD.a, the local potential
of the p2 sites have a single well and as a consequence
order-disorder transition is induced. If we further increaseD,
the influence ofp2 sites fades out inducing the disorde
order phase transition. The reason is that for the double
potentials, the depth of the minima decreases as2(a
1D)2/4, whereas the minimum value of the single well p
tential remains equal to zero for any value ofD.

We will focus now on the DOD phase transitions as
function of the coupling. These transitions occur fora1D
.0, a2D,0, andp1 small, i.e., when sites with negativ
multiplicative noise feel a single well potential, and sit
with positive noise, which are a small fractionp1 of the
system, feel a double well potential. In this case, we c

FIG. 6. Order parameterm and susceptibilityx obtained from
numerical simulations varyingD (a50.75, D59, andp150.2).
We also plot the mean-field order parameter~solid line! and the
positions of the critical points with two vertical wide solid lines.
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visualize the system as a small number of particles in dou
well potentials@we will refer to them as double well~DW!
sites# surrounded by particles in single well potentials@single
well ~SW! sites#.

When the coupling between sites is zero, there is no
dered phase; particles in SW sites fluctuate around z
whereas those in DW sites fluctuate either around the ne
tive or the positive minimum of the potential. The tot
‘‘magnetization,’’ i.e., the average of the field, is therefo
zero. If we increase the coupling and the double wells
deep enough, the DW sites act as ‘‘seeds’’ of domains w
positive or negative magnetization. These domains posse
kind of surface tension due to the coupling, and eventua
one of them grows covering the whole system. However
the coupling is strong enough, the SW sites surrounding
DW sites do not allow the creation of such domains.

This intuitive argument explains how the reentrant tran
tion with the coupling occurs. However, it can be transla
into a more quantitative theory that we calldecimation tech-
nique.

A. Decimation

A decimation theory can be introduced for a globa
coupled random GL model. The idea is to integrate out
SW sites, i.e., those sites wherea2D takes a negative value
in the partition function:

Z5E
RN

dcW exp@2bHGC~$c i%;$z i%!#, ~13!

wheredcW 5) i 51
N dc i and the Hamiltonian is given by

HGC~$c i%;$z i%!5(
i 51

N H V~c i ;z i !1
D

4N (
j 51

N

~c j2c i !
2J .

~14!

In order to obtain simple analytic expressions, we a
proximate the local potential at SW sites by a parabolic
tential, i.e.,

V~c i ;2D!52
a2D

2
c i

21
1

4
c i

4.2
a2D

2
c i

2 . ~15!

The approximation is valid ifa2D,0 and the field is small
enough. The decimation process, carried out on a glob
coupled random GL model, yields the approximate partit
function:

Z}E
RN1

dcW 1exp~2bH̃GC@$c i% i PS1# !, ~16!

wheredcW 1[) i PS1dc i andS1 is the set of DW sites, i.e.
the set of sites where the noise isz i5D. The number of these
sites is approximatelyN1[Np1 . The effective Hamiltonian
is:
3-5
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H̃GC~$c i% i PS1!5 (
i PS1 H 2

a*

2
c i

21
1

4
c i

4

1
D*

4N1
(

j PS1
~c j2c i !

2J . ~17!

This Hamiltonian has the same functional form as the Ham
tonian of anonrandomGL model with N1 sites @cf. Eqs.
~17! and ~14! and ~15! with D50). The parameters of th
effective Hamiltonian are given by

a* 5a1D1
D~12p1!~a2D!

Dp11D2a
,

~18!

D* 5Dp1

D1D2a

Dp11D2a
.

Therefore, the DW sites of the original model now form
nonrandom GL system with effective couplingD* and ef-
fective control parametera* . Figure 7 depicts the mean-fiel
phase diagram of a nonrandom GL model in the pla
(D* ,a* ). For given values ofD, a, p1 , andD in the origi-
nal model, by applying the transformation given by Eq.~18!,
one can check whether (D* ,a* ) is in the region of ordered
or disordered phase. In the same way, we can map traje
ries in the original space of parameters (D,a,D,p1) into
trajectories in the phase diagram of Fig. 7.

For D, a, andp1 constant,D* is an increasing function
of D, whereasa* is decreasing. This can be easily e
plained: the couplingD* between DW sites in the decimate
system increases with the couplingD in the original model;
on the other hand, the effective control parametera* de-
creases due to the influence of the decimated SW sites. I
even be negative, i.e., those sites that were DW sites in
original model become SW sites after the decimation.

FIG. 7. Decimation technique trajectories for different values
p1 (a520.75, D54). The wide solid line indicates the mean
field phase diagram of the nonrandom modelA. The arrows indicate
the direction of the trajectories as one increasesD.
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The four trajectories in Fig. 7 start atD* 50 and a*
5a1D53.25 (D50). This point is obviously in the disor
dered phase region. The trajectories then move upwards
some of them enter into the ordered phase region. This
disorder-order transition is due to the increase of the eff
tive couplingD* . For some values ofp1 (p150.3 in Fig.
7!, the trajectories get back to the disordered phase reg
through a reentrant phase transition, that is due to the
crease of the effective control parametera* . We see the two
effects of an increase of the couplingD: it promotes the links
between sites inducing a disorder-order phase transition
reinforces the influence of the SW sites on the rest of
system, inducing an order-disorder phase transition.

Trajectories in Fig. 7 diverge for finite and positivea* if

a1D~2p121!.0. ~19!

If this condition is fulfilled, the system presents a sing
disorder-order transition. On the other hand, ifa1D(2p1

21),0, there can be either no transition at all or a reentr
transition. This condition allows us to reproduce a number
features of the phase diagrams of Figs. 1 and 3. Fora,0
~Fig. 1!, if p1,1/2 we have either DOD or no transition
whereas ifp1.1/2 there is DO transition forD.uau/(2p1

21). This implies that the curves in Fig. 1 forp1.1/2 have
a vertical asymptote atD5uau/(2p121). Fora.0 ~Fig. 3!,
if p1.1/2 we have DO transition for any value ofD,
whereas if p1,1/2 there is DO transition only forD
,a/(122p1). This also locates atD5a/(122p1) the
vertical asymptotes of all the curves in Fig. 3.

The decimation technique also accounts for the ph
transitions occurring by increasingD. In Fig. 8 we have plot-
ted on the phase diagram of the nonrandom GL model
trajectories resulting from varyingD with a50.75, D54
and several values ofp1 . D* is a decreasing function ofD
but a* does not have a monotonous behavior. In any ca
we can clearly see the ODO transitions in the figure. Mo

f

FIG. 8. IncreasingD trajectories calculated by the decimatio
method fora50.75, D54, and different values ofp1 . The wide
solid line represents the mean-field phase boundaries of the non
dom modelA and the arrows the direction of the trajectories as o
increasesD.
3-6
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RANDOM GINZBURG-LANDAU MODEL REVISITED: . . . PHYSICAL REVIEW E63 031103
over, Eq.~18! tells us that forD→` we haveD* 5Dp1 and
a diverges. Therefore, the system is in an ordered phase
D→` for any value of the other parameters~assumingD
Þ0).

B. The random Blume-Capel model

One of the most important results of the present work
the generality of the mechanism behind both the DOD a
ODO phase transitions: external fluctuations~impurities!
producing the mixture of two dynamics. We expect to find
similar behavior in a number of different systems. To su
port this idea, here we study the phase diagram of the
called Blume-Capel~BC! model @25#, a spin-1 system with
Hamiltonian,

HBC~$Si%!5(
i 51

N H U~Si !2J(̂
j i &

SjSi J , ~20!

whereSi is the spin variable that takes the values 0,61.
This model was proposed to describe the critical beha

of 3He-4He mixtures. The3He atoms are represented by t
stateS50, and 4He by S561. The phase transition to
superfluid state corresponds to a symmetry breaking betw
S561 states.

The termU(Si)52lSi
2/2 is the local potential at eac

site. Note thatl plays the equivalent role ofa in the local
potential of the GL model. In the BC model ifl,0, the
local dynamics favors the zero spin solution, whereas il
.0 the nonzero spin solutions are energetically more fav
able.

The inclusion of external fluctuations in the local dyna
ics of the BC model will ensure one of the ingredien
needed for the appearance of DOD and ODO phase tra
tions, dynamics mixture. Consequently, we perturb the
control parameterl with quenched dichotomous fluctuation
with probability density~3! obtaining the following site-
dependent local potential,

U~Si ;z i !52
l1z i

2
Si

2 . ~21!

This random version of the BC model has been rece
proposed in the context of the critical behavior of a mixtu
of 3He and 4He in random media, particularly an aerog
@22#. One of the most striking results, when including ra
dom fields in such a model, is the elimination of first-ord
phase transitions.

To clarify the relationship between the random BC a
GL models, let us defineD54dJ anda5l1D. In terms of
these parameters, the Hamiltonian of the random BC mo
now reads

HRBC~$Si%;$z i%!5(
i 51

N H 2
a1z i

2
Si

21
D

8d (̂
j i &

~Sj2Si !
2J .

~22!

The replica symmetry ansatz gives us the following eq
tion for the critical points~see the Appendix!:
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D
5

p1

11 1
2 eD2a2D

1
p2

11 1
2 eD2a1D

, ~23!

where we have chosenb52 in order to compare with the
results for the GL model. In Fig. 9 we plot the phase diagr
in the (D,D) plane for different values ofp1 anda50.75.
As in the random GL model, the random BC system a
shows DOD and ODO reentrant phase transitions and
saddle-point structure asp1 changes.

VI. CONCLUSIONS AND PERSPECTIVES

In this work we used different analytical techniques a
also numerical simulations to show the existence of t
counterintuitive reentrant phase transitions in the GL mo
perturbed by quenched dichotomous fluctuations.

Disorder-order-disorder transitions appear when the c
pling increases. The fact that the coupling can destroy
ordered phase was first found in a nonequilibrium phase t
sition induced by colored noise@19#. Here we have shown
that the same phenomenon can be observed in equilibr
disordered system.

We have characterized order-disorder-order transiti
when the intensity of the noise increases. This sequenc
transitions is the opposite to those found in nonequilibriu
models where weak noise has an ordering role wher
strong noise is destructive.

We have also given an intuitive explanation of these
entrant phase transitions using a decimation technique
allows to map trajectories in the phase diagram of the r
dom system into trajectories in a nonrandom GL model.

Our work may be relevant to different situations regardi
anisotropic ferromagnets. The model considered can desc
the critical behavior of a conglomerate made by two kinds
anisotropic ferromagnets with different critical temperatur
In this context, a simple experiment could be devised
check some of the results obtained in this work, as the m

FIG. 9. (D,D) phase diagram for the random Blume-Cap
model for different values ofp1 (b52, a50.75). Note the saddle
point structure and the reentrant DOD and ODO phase transit
very similar to those occurring in the random GL model.
3-7
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netization of a single anisotropic ferromagnet could b
driven through ODO reentrant phase transitions by hea
the material in a random arrary of points in a dichotomo
way.

Moreover, as already mentioned in the Introduction,
GL model is a fundamental model that appears in ma
problems of critical phenomena. We have studied the in
ence of dichotomic disorder for a conserved model,
modelA, but we expect this type of disorder to be relevant
other kinds of dynamics as phase separation~model B),
structural transitions~modelC), binary fluids~modelH), or
superfluid phases~modelF).

Most of the features discussed for the random GL mo
are also exhibited by a random Blume-Capel model, use
describe the critical behavior of helium mixtures in a rand
media, showing that our results do not depend on the de
of the model and are present whenever a system poss
two types of local dynamics with one and two stable stat

Finally, we want to briefly discuss the guidelines for f
ture work on the field. The inclusion of a finite correlatio
time perturbation on the external fluctuations will indu
non-equilibrium noise-induced phase transitions. In parti
lar, the results of Refs.@12,13# should be recovered when th
correlation time vanishes. Therefore, finite correlation ti
should provide information about the crossover betwe
these two models. We then expect an even richer phen
enology and, in particular, the appearance of a character
correlation time for which the reentrant character of the tr
sitions vanishes. Work in this direction is in progress.
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APPENDIX QUENCHED AND ANNEALED IMPURITIES

The macroscopic properties of disordered systems
equilibrium can be calculated by means of two types of
erages over the configurations of disorder: quenching
annealing. The former corresponds to quenched or fro
impurities and the latter to impurities that evolve and th
malize at the time scale of measurement.

The starting point of both averages is the partition fun
tion of the system for a given disorder configuration:

Z5E
RN

dcW exp@2bH~$c i%,$z i%!#, ~A1!

where dcW 5) i 51
N dc i and H($c i%,$z i%) is the globally

coupled Hamiltonian~14! of the system that depends on th
field $c i% and also on the disorder$z i%. This makes the
model simpler than systems where disorder affects the c
pling between sites, as the Sherrington-Kirkpatrick mo
@26#.
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Using the Hubbard-Stratonovich transformation:

eay2
5

1

A2p
E

R
exp~2x2/21xyA2a!dx, ~A2!

with y5( ic i and a5bD/(2N), and defining m
[xAb/(4DN), the partition function can be written as

Z5A2DN

bp E
R
dmE

RN
dcW expF2b(

i 51

N S V~c i ;z i !1
D

2
c i

2D
2

2DN

b
m212Dm(

i 51

N

c i G . ~A3!

After some simple manipulations, Eq.~A3! becomes

Z5E
R
dmE

RN
dcW )

i 51

N

ef (c i ;m), ~A4!

where

f ~c i ;m!52bS V~c i ,z i !1
D

2
c i

2D2
2D

b
m212Dmc i

1
1

2N
lnS 2DN

bp D . ~A5!

Annealing averages are derived from the annealing free
ergy Fann52 ln^Z&/b where ^•& denotes the average ove
configurations of disorder. Averaging Eq.~A4! gives

^Z&5E
R
dmK E

RN
dcW )

i 51

N

e@ f (c i ;m)#L
5E

R
dmK E

R
dce@ f (c;m)#L N

5E
R
dm e@NF(m)#, ~A6!

where we have used the fact thatz i are independent random
variables. The functionF(m) is given by

F~m![
1

2N
lnS 2DN

bp D2
2D

b
m2

1 lnE
R
dc^exp@2bV(c;z)#&

3exp@2~bD/2!c212Dmc#. ~A7!

In the thermodynamic limit,N→`, only the saddle points
of F(m) contribute to the integral in Eq.~A6!. The saddle
points are the solutions of the equationF8(m)50, i.e.,

m5
b

2ER
dc c Pann~c;m! ~A8!

wherePann(c;m) is the probability distribution,
3-8
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Pann~c;m!5N~m!^exp@2bV~c;z!#&

3expS 2
bD

2
c212Dmc D ~A9!

N(m) being a normalization constant. Ifz i are dichotomous
variables, as in the model studied in the paper, we have

Pann~c;m!5N~m!@p1exp$2bV~c;D!%

1p2exp$2bV~c;2D!%#

3expS 2
bD

2
c212Dmc D . ~A10!

The solutionm of Eq. ~A8! is the annealing average o
( i 51

N c i /N in the thermodynamic limit. Then, the phase d
gram of the system can be found by a similar analysis as
one carried out in Sec. II. Equation~A8! plays identical role
as the self-consistency equation~11! and so doesm as ^c&.
Notice, however, thatPann(c;m) is not equal toPst(c;^c&)
in Eq. ~9!, which leads to different phase diagrams fro
those calculated in Sec. II.

On the other hand, quenched averages are obtained
the quenching free energyFquen52(1/b)^ lnZ&. The aver-
age of the logarithm can be calculated using the replica t
@26#:

^ lnZ&5 lim
n→0

^Z n&21

n
. ~A11!

The averagêZ n& can be interpreted as the partition fun
tion of a set ofn replicas of the system. The replicas do n
interact with each other but the configuration of disorder
the same for all of them. Consequently, they are not stat
cally independent. The average ofZ n can be written as

^Z n&5E
RnS )

g51

n

dmgD K )
g51

n E
R
dcgexp@ f ~cg ;mg!#L N

5E
RnS )

g51

n

dmgD exp@NF̃~$mg%!#, ~A12!

with

F̃~$mg%!5
n

2N
lnS 2DN

bp D2
2D

b (
g51

n

mg
2

1 lnK )
g51

n E
R
dcgexp@2bV~cg ;z!#

3expS 2
bD

2
cg

212DmgcgD L . ~A13!

Once more, the integral in Eq.~A12! could be solved in
the thermodynamic limit by finding the saddle points
F̃($mg%). In this case, further assumptions have to be ma
First, the replica symmetry ansatz, which assumes that th
03110
e
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relevant saddle points are those withmg5m for all g. With
this, the functionF̃ on this subspace reads:

F̃~m!5
n

2N
lnS 2DN

bp D2
2Dn

b
m21 lnK F E

R
dc

3exp$2bV~c;z!%expS 2
bD

2
c212Dmc D GnL .

~A14!

Second, we assume that the limitsn→0 andN→` commute
and the functionF̃(m) can be analytically extended for non
integern and expanded aroundn50 as

F̃~m!.
n

2N
lnS 2DN

bp D2
2Dn

b
m21 lnK 11nlnE

R
dc

3exp@2bV~c;z!#expS 2
bD

2
c212Dmc D L

.nF 1

2N
lnS 2DN

bp D2
2D

b
m21K lnE

R
dc

3exp@2bV~c;z!#expS 2
bD

2
c212Dmc D L G .

~A15!

Thus, the equation for the saddle points ofF̃(m) is

m5
b

2ER
dc c Pquen~c;m!, ~A16!

wherePquen(c;m) is the probability distribution

Pquen~c;m!

5K expF2bV~c;z!2
bD

2
c212DmcG

E
R
dcexpF2bV~c;z!2

bD

2
c212DmcG L .

~A17!

If z i are dichotomous variables we recover the se
consistency equation~11! and thus the same phase diagra
Therefore, we have proven that the mean-field analysis
Sec. II is equivalent to quenching averages under the
sumption of symmetry of replicas.

Quenching and annealing give rather different phase
grams. As mentioned in Sec. VI, we expect that the G
model perturbed by dichotomous noise with finite correlat
time will give a phase diagram similar to the one obtained
using annealing averages.
3-9



h-

A

an

ys.
-

. de

E

v.

-

BUCETA, PARRONDO, AND DE LA RUBIA PHYSICAL REVIEW E63 031103
@1# S-K. Ma, Modern Theory of Critical Phenomena~Benjamin-
Cummings, Reading, 1976!.

@2# M. E. Fisher, Rev. Mod. Phys.46, 597~1974!; 79, 653~1998!,
and references therein.

@3# T. C. Lubensky, Phys. Rev. B11, 3573~1975!.
@4# P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435

~1977!.
@5# R. Toral and A. Chakrabarti, Phys. Rev. B42, 2445~1990!.
@6# D. I. Uzunov,Theory of Critical Phenomena~World Scientific,

Singapore, 1993!, and references therein.
@7# O. T. Valls and G. F. Mazenko, Phys. Rev. B34, 7941~1986!.
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